CADD Structures Drafting
Reference Guide

Prepared by Bureau of Bridges and Structures
Division of Highways

Published by Illinois Department of Transportation

Springfield, Illinois

June 21, 2013
Continually Updated Resource
Document Control and Revision History

The CADD Structures Drafting Reference Guide is owned by the Illinois Department of Transportation Bureau of Bridges and Structures. The guide is reviewed during use and updated by the Bureau of Bridges and Structures, as necessary.

All changes in the main body of the guide are identified with a vertical line in the outside margin of the page.

Interim changes are communicated through the Bureau of Bridges and Structures email subscription service. Copies are available electronically on the IDOT web site.

Archived versions of this guide are available to examine in the Policy and Research Center, Room 320 of the Hanley Building.

Electronic
Portable Document Format (PDF) has been selected as the primary distribution format, and the official version of the guide is available on the Policy & Research Center Library site on InsideIDOT.

Hard Copy
This guide is not distributed in hard copy format. Users of this guide who choose to print a copy of the guide are responsible for ensuring use of the most current version.
TABLE OF CONTENTS

1. Introduction ... 1

2. MicroStation Information ... 2
 2.1. Configuration .. 2
 2.2. Resource Files ... 2
 2.3. Dgnlib Files ... 3
 2.4. Levels / Symbology .. 3-4
 2.5. Text Styles ... 5-6
 2.6. Dimension Styles ... 6
 2.7. Working Units ... 6
 2.8. Models .. 6
 2.9. Seed Files .. 7-8
 2.10. Cell Libraries ... 8-9
 2.11. CADD Roadway and Structure Project Deliverables Policy 10
 2.12. Printing ... 10

3. General Detailing Information ... 11
 3.1. Text ... 11-12
 3.2. Capitalization .. 12
 3.3. Abbreviations ... 12
 3.4. Titles ... 13-14
 3.5. Borders ... 14
 3.6. Dimensioning ... 15-18
 3.7. Patterning ... 19
 3.8. Drawing Scales .. 19-20

4. TSL and Final Plan Preparation .. 21
 4.1. File Creation / Naming Convention .. 21
 4.2. Roadway Data ... 21
 4.3. Bridge Manual Checklists ... 21
 4.4. Standards Checker .. 21
 4.5. Final Plan Sheet Sequence .. 21-22
 4.6. Guidelines .. 22
 4.6.1. General .. 22
 4.6.2. Type, Size and Location / General Plan and Elevation 22-23
 4.6.3. Stage Construction Details .. 23-25
 4.6.4. Top of Slab Elevations ... 26
 4.6.5. Superstructure ... 26
 4.6.6. Diaphragm Details (Integral Abutment) ... 27
 4.6.7. Diaphragm Details (Semi-integral Abutment) 27
 4.6.8. Bridge Approach Slab Details .. 27
 4.6.9. Framing Plan (steel, PPC I-beam or bulb T-beam) 27
 4.6.10. Structural Steel Details ... 27
 4.6.11. Abutments and Piers ... 28
 4.6.12. Pile Base Sheets ... 28
 4.6.13. Soil Boring Logs .. 28

5. Addendums ... 29

6. Construction Changes .. 30
7. Internet Information ... 31
 7.1. Web Page .. 31
 7.2. Subscription Service ... 31
 7.3. ProjectWise Web Explorer ... 31
8. District and Central Office CADD Manager Contact Information................................. 32
1 Introduction

Pursuant to Illinois Department of Transportation Policy BBS-14, this policy has been established to promote the development of highway improvement projects in a consistent and efficient manner.

This document supersedes all previous versions of the IDOT CADD Structures Drafting Reference Guide.

The reference guide herein contains basic MicroStation and structure detailing information that shall be used in the preparation of structure plans for the Illinois Department of Transportation. It is intended to be used in conjunction with the IDOT CADD Roadway and Structure Project Deliverables Policy and the Bureau of Bridges and Structures Manuals.

For current versions of IDOT CADD software and additional information, refer to the IDOT CADD Support web site at http://www.dot.il.gov/cadd.html.
2 MicroStation Information

2.1 Configuration

Engineering Systems at IDOT has created a CADD environment which contains the configuration necessary for the preparation of roadway and structure plans. This environment is available at http://www.dot.il.gov/cadd.html as a single download entitled “IDOTCAD_v2011.exe”. To use the IDOT CADD environment, refer to the “ReadMeNow.pdf” file and the IDOTCAD_Directories.pdf” file contained within the executable file. The Bureau of Bridges and Structures (BBS) cell libraries, seed files, pdf’s, and color table are included with this CADD environment.

All of the bridge cell libraries still may be downloaded from the Bureau of Bridges and Structures CADD Support Web Site (http://www.dot.il.gov/bridges/bscadd2.html); although, they are already included in the IDOT CADD environment.

When beginning any project, verify that the latest configuration files, resource files, cell libraries, and dgnlib’s are installed. This can be accomplished via a comparison of installed files to those currently available (i.e. through date, file size, etc.). An easier way to verify currency is to be an active participant in the Bureau of Bridges and Structures Subscription Service. Subscribers are notified through e-mail whenever changes have been made to the contents of the BBS Web Site or the IDOT CADD environment. Refer to Section 7.2 for information on where to sign up for the Subscription Service.

2.2 Resource Files

Resource files necessary for the preparation of structure plans are as follows:

- **Bridge.tbl**: The Bureau of Bridges and Structures color table.
- **fontlib.rsc**: IDOT’s custom font library for roadway and structure projects.
- **Scales.def**: Definition file used for setting the annotation scale.
- **Units.def**: Units definition file for selecting the proper working units.
- **V8BridgeLineSty.rsc**: A revised line style resource file specifically for MicroStation v8 and subsequent versions. Figure 2.2-1 contains a listing of line style names as well as how they appear in MicroStation.

```
V8Breakline
V8Centerline
V8Cutline
V8Instrem
V8Naturalgnd
V8Railroad
V8RightofWay
V8Riprap
V8Stremlin
```

Figure 2.2-1. MicroStation v8i Line Style Names and Appearances
2.3 Dgnlib Files

Dgnlib’s are design library files with predefined settings. When an element is placed in a design file, MicroStation “looks” to the dgnlib for that element’s predefined properties or settings. Once placed, they become part of the active design file. If changes are made to a dgnlib, those changes are not automatically updated in the design file. However, all or part of the settings can be updated from a revised dgnlib by executing the key-in command “dgnlib update (all, dimstyles, levels, etc.)”. The necessary dgnlib’s are:

- BridgeStyles.dgnlib - contains the text and dimension styles used in the preparation of structure plans.
- IDOTLevel2011.dgnlib - contains all of the levels with assigned symbology settings for the different disciplines within IDOT.

2.4 Levels / Symbology

Levels are set up in the file “IDOTLevel2011.dgnlib” for each department discipline (bridge, roadway, mapping, aerial surveys, etc.) within IDOT. All symbologies are preset within this design library (dgnlib file). Attributes include name, color number, line style and weight for each level. Before placing elements into a design file, first select the desired level. After selection, all of the associated symbology will be automatically set. There are instances where overriding these attributes is allowed. For structures, it is allowed on the levels named “Bridge_Pattern”, “Bridge_Miscellaneous” and “Soils_Boring Logs”.

The available bridge levels should be sufficient for most projects; however, for very unique projects, it may be beneficial to create and utilize additional levels. This may only be done by receiving permission from the Bureau of Bridges and Structures to do so.

Filters have been set up to make it easier to locate a particular discipline’s group of levels. The filter tool, located on the Attributes Toolbar, allows users to control the group of levels viewed within the Level Manager or Level Display dialogs.

For structures, there are four major groups of levels. Figure 2.4-1 shows a table containing all of the structure levels. These basic groups are as follows:

- Group 1: Design levels - specifically for the creation of structure design plans.
- Group 2: Planning levels - levels for the creation of the plan and elevation views of the Type, Size and Location (TSL) as well as the plan and elevation views of the General Plan and Elevation (GP&E). The other details on a TS&L can make use of the Bridge_TSandL or the Bridge_Design levels depending on the desired appearance.
- Group 3: Border levels – specifically for borders.
- Group 4: Common levels - remaining levels are common to both planning and design.

For the TSL and GP&E, it is acceptable to utilize the roadway levels for elements such as topography and existing elements that are taken from the roadway design (either copied or referenced).
<table>
<thead>
<tr>
<th>Level Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge_Addendum</td>
<td>Level used for addendums</td>
</tr>
<tr>
<td>Bridge_Construction Change</td>
<td>Level used for construction changes</td>
</tr>
<tr>
<td>Bridge_Design Concrete Hidden</td>
<td>Hidden concrete object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Concrete Object</td>
<td>Concrete object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Existing</td>
<td>Existing object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Reinforcement</td>
<td>Reinforcement object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Reinforcement Bending</td>
<td>Reinforcement bar bending diagram object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Reinforcement Existing</td>
<td>Existing reinforcement object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Steel Hidden</td>
<td>Hidden steel object line for design plans</td>
</tr>
<tr>
<td>Bridge_Design Steel Object</td>
<td>Steel object line for design plans</td>
</tr>
<tr>
<td>Soils_Boring Logs</td>
<td>Soil boring logs (symbology may vary)</td>
</tr>
<tr>
<td>Bridge_TSandL Concrete Hidden</td>
<td>Hidden concrete object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Concrete Object</td>
<td>Concrete object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Existing</td>
<td>Existing object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Intermittent Stream</td>
<td>Intermittent stream object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Natural Ground</td>
<td>Natural ground object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Railroad</td>
<td>Railroad track line for GP & E and TS & L location sketch</td>
</tr>
<tr>
<td>Bridge_TSandL Reinforcement</td>
<td>Reinforcement object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Reinforcement Existing</td>
<td>Existing reinforcement object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Right of Way</td>
<td>Right of Way line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Steel Hidden</td>
<td>Hidden steel object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Steel Object</td>
<td>Steel object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_TSandL Streamline</td>
<td>Stream object line for GP & E and TS & L</td>
</tr>
<tr>
<td>Bridge_Sheet Border</td>
<td>Border level</td>
</tr>
<tr>
<td>Bridge_Sheet Design Print</td>
<td>Design level for shape that can be used with batch plot</td>
</tr>
<tr>
<td>Bridge_Sheet TsandL Print</td>
<td>Planning level for shape that can be used with batch plot</td>
</tr>
<tr>
<td>Bridge_Breakline</td>
<td>Breakline (shift position if unable to see pattern)</td>
</tr>
<tr>
<td>Bridge_Centerline</td>
<td>Centerline (shift position if unable to see pattern)</td>
</tr>
<tr>
<td>Bridge_Construction Line</td>
<td>Level used for construction elements</td>
</tr>
<tr>
<td>Bridge_Cut or Match Line</td>
<td>Cut or match line (shift position if unable to see pattern)</td>
</tr>
<tr>
<td>Bridge_Dimensions and Text</td>
<td>General text and dimensions</td>
</tr>
<tr>
<td>Bridge_Markups</td>
<td>Level for revision notation for designers</td>
</tr>
<tr>
<td>Bridge_Miscellaneous</td>
<td>Level where symbology may vary</td>
</tr>
<tr>
<td>Bridge_Pattern</td>
<td>Patternning</td>
</tr>
<tr>
<td>Bridge_Riprap</td>
<td>Riprap</td>
</tr>
<tr>
<td>Bridge_Table Border</td>
<td>Heavy line for use with tables</td>
</tr>
<tr>
<td>Bridge_Table Lines</td>
<td>Thin line for use with tables</td>
</tr>
<tr>
<td>Bridge_Title</td>
<td>Title level</td>
</tr>
</tbody>
</table>

Figure 2.4-1. Structure Levels
2.5 Text Styles

Text styles are a feature in MicroStation which greatly simplifies and standardizes the placement of text. When placing text, selecting a text style automatically adjusts the text settings. When used, it is not necessary to manually change font, text height, text width, line spacing or other properties independently.

Five text styles listed in Fig. 2.5-1 were created for use in the creation of structure plans. These text styles were set up using the data presented in Fig. 2.5-2. They exist in the file named "BridgeStyles.dgnlib".

<table>
<thead>
<tr>
<th>Text styles</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br1:001scale100</td>
<td>Subscript and superscript</td>
</tr>
<tr>
<td>Br1:001scale140</td>
<td>Callouts, dimensions and notes</td>
</tr>
<tr>
<td>Br1:001scale200</td>
<td>Titles</td>
</tr>
<tr>
<td>Br1:001scale_boring</td>
<td>Text in soil boring logs (In-house)</td>
</tr>
<tr>
<td>Br1:001scale_TOS_Elev</td>
<td>Top of slab elevation table text</td>
</tr>
</tbody>
</table>

Figure 2.5-1. Text Styles for ANSI D-size Structure Plans

<table>
<thead>
<tr>
<th>Text Style Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>font</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>General text</td>
</tr>
<tr>
<td>Subscripts</td>
</tr>
<tr>
<td>Top of Slab Elevations</td>
</tr>
<tr>
<td>Text in soil boring logs</td>
</tr>
<tr>
<td>Titles</td>
</tr>
</tbody>
</table>

Figure 2.5-2. Text Style Settings for ANSI D-size Structure Plans

In order to use text styles, one must understand that they have been set up relative to the ANSI D-sized border which is literally 22" x 34". Unlike the roadway borders, the structure borders are not scaled twelve times in the bridge cell library. This is so that either the architectural or engineering scales could easily be chosen without requiring the annotation scale to be different than the scale factor used in placing the border.

Section 3.8 briefly discusses four methods of drawing, the first two not requiring the use of the annotation scale feature in MicroStation. If the latter two are used, the annotation scale feature must be used.

The use of Annotation Scale has been simplified in MicroStation v8i. The “Drawing Scale” dialog has been added and may be accessed through the pull-down, “Settings” / “Drawing Scale”. From within the dialog, the “Annotation Scale” toggle must be turned on. The only other step needed is the selection of the desired scale. (See Figure 2.5-3). Note that the annotation scale settings apply only to the current model of a particular dgn. These settings may also be changed in the Model Properties dialog as they were in MicroStation v8. Additional settings are available there.

One item that should be mentioned here is that the text settings of the text styles generally should not be overridden. Two exceptions are with the justification and occasionally the underline. Changing other settings defeats the purpose of having text styles.
Another item that should be mentioned here is if the dgnlib update command is run against a file using text or dimension styles, the overrides may inadvertently be switched to the default settings of the associated text styles or dimension styles. Because of this, caution should be exercised if executing this command.

![Drawing Scale Dialog](image)

Fig. 2.5-3. Drawing Scale Dialog

2.6 Dimension Styles

Dimension styles are a feature in MicroStation which simplifies placement of dimensions and promotes uniformity in dimensioning. Similar to text styles, the dimension settings are pre-defined inside of “BridgeStyles.dgnlib”. They also may require that the annotation scale be set and turned on in order for them to work properly.

Refer to Section 3.6 for further discussion of dimensioning and the use of dimension styles.

2.7 Working Units

The working units are set in survey feet for master units and survey inches for sub-units in the IDOT seed files. The working units are defined in all IDOT seed files and are extremely important in long distance design file measurements. Along with the working units, the importance of the global origin setting of the design file affects the accuracy of the design. The Department sets the global origin to x=0, y=0, and z=0 in all of the IDOT seed files.

2.8 Models

A major addition to MicroStation v8 was in the creation of models. The model concept allows for multiple drawings (models) within a single design file. The Bureau of Bridges and Structures is utilizing the model concept by creating each sheet of a set of design plans in its own design model. Use of the model concept in the preparation of structure plans is not mandatory. It is acceptable to have individual files for each sheet. A sample project has been placed on the Bureau of Bridges and Structures Web Site to illustrate both methods. (These may not depict the most current policy). They are available at: http://www.dot.il.gov/bridges/bscadd2.html

MicroStation v8i provides additional model types. There are design models, drawing models, and sheet models. Design and sheet models have the ability to be three-dimensional, while the drawing models are only allowed to be two-dimensional. At this time, we only use and accept two-dimensional models for all plan sheets; however, three-dimensional files or models may be used to generate the two-dimensional plan sheets.
2.9 Seed Files

Three seed files are available for the preparation of structure plans. They are named “ebridge_models.dgn”, “ebridge_individual.dgn”, and “ebridge_in-house.dgn”. These seed files are located in the “StrctStd\Seed\” folder of the IDOT CADD environment described in Section 2.1.

The “ebridge_models.dgn” file contains design and planning models in which ANSI D-sized borders have been placed. Additional models intended for sheets and full scale details may be added or removed as required. The ebridge_models.dgn seed file should be chosen if a single design file is to be employed for an entire job. Figure 2.9-1 provides a screen capture showing contents of the “ebridge_models.dgn” seed file.

![Models](image)

Figure 2.9-1. Contents of Seed File “ebridge_models.dgn”

The “ebridge_individual.dgn” file contains a single design model with a design border inserted. This seed file should be chosen if an individual design file is utilized for each sheet in a job. Figure 2.9-2 provides a screen capture showing the contents of the “ebridge_individual.dgn” seed file.
The “ebridge_in-house.dgn” file is solely for jobs to be completed internally by IDOT. It is similar to the “ebridge_models.dgn” seed file, but contains our in-house borders which slightly differ from those to be used by consultants.

For all three seed files, the borders are placed with the lower left hand corner of the inner border (working area) at xy=0,0.

The file naming requirements for design files and models are discussed in the CADD Roadway and Structure Project Deliverables Policy. Model names and descriptions are easily changed by slowly double-clicking on a model in the models dialog or else they may be changed in the “Edit Model Properties” dialog.

For more information concerning the borders used in these seed files, see Section 3.5.

2.10 Cell Libraries

Although the cell libraries appear as in previous versions of MicroStation, they are quite different. Cell libraries are now drawings that utilize the design model concept, but maintain the previous file extension of “cel”. Each “cell” in a cell library is a design model. The cell libraries may be used as in previous versions of MicroStation through the cell library dialog. They can also be imported into a design file using the models dialog, or opened and manipulated just as any other design file.

The Bureau of Bridges and Structures has several cell libraries available to aid in the preparation of structure plans. Most of the libraries contain “base sheets” which are either complete, or require additions or modification in order to be included with a set of design plans. It is important to note that if a base sheet’s original content is changed, the base sheet name and date must be removed. This signals to the reviewers that modifications were made to the base sheet. If information is added to a base sheet (such as filling in dimension values), then the base sheet name and date should remain. In addition to this, when base sheets contain details that do not apply to a project (such as the pile base sheets), the details that are not applicable are not to be crossed out.

The Bureau of Bridges and Structures periodically updates the base sheets and revised copies are placed in both the IDOT CADD environment (described in Section 2.1) as well as the Bureau’s Web Site. E-mails are sent to subscribers of the IDOT Bureau of Bridges and Structures Subscription Service whenever these updates are posted on the Internet. The other available cell libraries contain individual details or elements that can be used for structure plan preparation. E-mail notifications are also sent out when these are updated. (See Section 7.2).

Adobe Acrobat “pdf” files have also been created for each of the cell libraries and are available in both the IDOT CADD environment as well as the BBS Web Site. Each pdf contains a table of contents and individual images of the cells or base sheet cells. The table of contents for each library contains links to each of the cell images.

Figure 2.10-1 presents a list of the structure libraries and their contents.
Bridge cell libraries related to ABD Memo 12.3 (Integral Abutments)

<table>
<thead>
<tr>
<th>Cell Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral_details.cel</td>
<td>Bridge design details (not included with base sheets)</td>
</tr>
<tr>
<td>Integral_planning.cel</td>
<td>Planning details for TS & L and GP & E</td>
</tr>
<tr>
<td>Integral_prestressed.cel</td>
<td>Superstructure (PPC I-beam and Bulb T-beam structures)</td>
</tr>
<tr>
<td>Integral_substructure.cel</td>
<td>Substructure</td>
</tr>
<tr>
<td>Integral_superstructure.cel</td>
<td>Superstructure</td>
</tr>
</tbody>
</table>

Details, symbols and notes

<table>
<thead>
<tr>
<th>Cell Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge.cel</td>
<td>Patterns, symbols and full size bridge objects</td>
</tr>
<tr>
<td>details.cel</td>
<td>Bridge design details (not included with base sheets)</td>
</tr>
<tr>
<td>general_notes.cel</td>
<td>General notes for placement on GP & E or general data sheet</td>
</tr>
<tr>
<td>pay_items.cel</td>
<td>Pay items for Total Bill of Material on GP & E or general data sheet</td>
</tr>
<tr>
<td>planning.cel</td>
<td>Planning details for TS & L and GP & E</td>
</tr>
</tbody>
</table>

Bridge base sheets

<table>
<thead>
<tr>
<th>Cell Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC_deckbeam.cel</td>
<td>PPC Deck beam superstructure</td>
</tr>
<tr>
<td>prestressed.cel</td>
<td>Superstructure (PPC I-beam and Bulb T-beam structures)</td>
</tr>
<tr>
<td>substructure.cel</td>
<td>Substructure (abutments, piers and piles)</td>
</tr>
<tr>
<td>superstructure.cel</td>
<td>Superstructure (deck, bearings, railings, scuppers, diaphragms)</td>
</tr>
</tbody>
</table>

Culvert base sheets

<table>
<thead>
<tr>
<th>Cell Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>single_box_culvert.cel</td>
<td>Single box culvert with horizontal cantilever, T type or L type wingwalls</td>
</tr>
<tr>
<td>double_box_culvert.cel</td>
<td>Double box culvert with horizontal cantilever, T type or L type wingwalls</td>
</tr>
</tbody>
</table>

Sign structure base sheets

<table>
<thead>
<tr>
<th>Cell Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alum_butterfly_sign.cel</td>
<td>Aluminum butterfly sign structures</td>
</tr>
<tr>
<td>alum_cantilever_sign.cel</td>
<td>Aluminum cantilever sign structures</td>
</tr>
<tr>
<td>alum_simple_span.cel</td>
<td>Aluminum simple span sign structures</td>
</tr>
<tr>
<td>breakaway_tubular_steel_sign.cel</td>
<td>Breakaway tubular steel signposts</td>
</tr>
<tr>
<td>breakaway_wf_steel_sign.cel</td>
<td>Breakaway wide flange steel signposts</td>
</tr>
<tr>
<td>bridge_mounted_sign.cel</td>
<td>Bridge mounted sign structures</td>
</tr>
<tr>
<td>monotube_sign.cel</td>
<td>Monotube sign structures</td>
</tr>
<tr>
<td>steel_cantilever_sign.cel</td>
<td>Steel cantilever sign structures</td>
</tr>
<tr>
<td>steel_simple_span_sign.cel</td>
<td>Steel simple span sign structures</td>
</tr>
<tr>
<td>steel_trichord_sign.cel</td>
<td>Steel trichord sign structures</td>
</tr>
</tbody>
</table>

Figure 2.10-1. Structure Libraries and Contents
2.11 CADD Roadway and Structure Project Deliverables Policy

A link for the CADD Roadway and Structure Project Deliverables Policy exists at http://www.dot.il.gov/bridges/bscadd2.html. It addresses project file requirements, data transfer, coordination, design file management, file naming conventions as well as various FAQ’s. Both the CADD Structures Drafting Reference Guide as well as the CADD Roadway Drafting Reference Guide are referenced by it.

2.12 Printing

The borders provided in the cell library “bridge.cel” (as well as the seed files) are designed to facilitate the use of batch printing. There is a single shape on the level “Bridge_Sheet Design Print” that is used for printing to both ANSI B-size sheets as well as ANSI D-size sheets. The ANSI D-size sheets are to be printed onto 34” wide paper. It is important to note that the outer shape of roadway and structure borders are intended to be the edge of the paper or image. It is not to be visible in the final prints or images. This is true for both the ANSI B-size as well as the ANSI D-size prints or images.

Figure 2.12-1 is a table showing the line thicknesses used on full size (ANSI D) prints. The line thicknesses for quarter-size (ANSI B) plans should be set to one-half of these values.

In a similar manner, Figure 2.12-2 is a table showing the line strokes used on full size (ANSI D) prints for defining MicroStation’s built-in line codes. The line strokes for quarter-size (ANSI B) plans should be set to one-half of these values.

<table>
<thead>
<tr>
<th>Weight (WT)</th>
<th>Thickness (in)</th>
<th>Thickness (mm)</th>
<th>Pen Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.010</td>
<td>0.250</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>0.014</td>
<td>0.350</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.020</td>
<td>0.500</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.024</td>
<td>0.600</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.031</td>
<td>0.800</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0.047</td>
<td>1.200</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 2.12-1. Line Thicknesses for ANSI D-size Prints

<table>
<thead>
<tr>
<th>Line Code LC</th>
<th>Line Space (in)</th>
<th>Line Space (in)</th>
<th>Line Space (in)</th>
<th>Line Space (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.015</td>
<td>0.0394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0788</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1574</td>
<td>0.0788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1574</td>
<td>0.0788</td>
<td>0.0236</td>
<td>0.0788</td>
</tr>
<tr>
<td>5</td>
<td>0.0552</td>
<td>0.0552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1574</td>
<td>0.0552</td>
<td>0.0394</td>
<td>0.0552</td>
</tr>
<tr>
<td>7</td>
<td>0.1574</td>
<td>0.0552</td>
<td>0.0552</td>
<td>0.0552</td>
</tr>
</tbody>
</table>

Figure 2.12-2. Line strokes for ANSI D-size Prints
3 General Detailing Information

3.1 Text

The text styles discussed in the MicroStation Configuration Information section (Section 2.5) shall be used in the preparation of structure plans in order to provide uniformity in appearance.

The following is information regarding how text should be placed in structure plans:

- Words that are abbreviated should not be capitalized or put in parentheses. Examples are “typ.”, “min.” and “max.”
- When using asterisks for a reference note, place the asterisk as a separate text entity to the left of the note as follows:
 * Tightly fasten the #8 bars together
 With No. 9 wire ties.
- When placing a note under a title of a section which applies to that section, do not use “Note:”. Only use “Note:” for a block of notes that are grouped or listed together in one location on a sheet.
- The words “wingwall”, “streambed” and “headwall” have been shown both as single words (wingwall) and as separate words (wing wall). They should always be shown as single words.
- The plus-or-minus symbol (“±”) shall be placed before approximate dimensions unless showing a specific tolerance. A specific tolerance should be shown in parentheses following the dimension.
- Avoid use of the note “Work this sheet with sheet…”. Use of a note such as this can become cumbersome and usually provides little benefit.
- Do not call out the route number within a job unless it is the centerline of a divided highway. Call out the centerline of roadway (and PG if applicable).
- Notes that are a part of any of the BBS base sheets should generally remain on the base sheet. As an example, the note “A distance of half the length of the wingwall but not less than six feet of the barrel shall be poured monolithically with the wingwalls” is occasionally moved or reworded on the GP&E. This note should not be moved or reworded unless a unique situation requires it.
- All notes should be left justified. An exception is when a multi-line callout is placed between arrows of a dimension. In this case, it can either be left or center justified. If it is left justified, try to make each line of text approximately the same length.
- The Bill of Material for individual elements, such as superstructure, abutment, pier, etc., should contain only the items that are listed in BBS base sheets. Showing all of the pay items for each of the structure elements on these sheets is unnecessary. All of the pay items are shown on the total bill of material.
- For appearance, the reinforcement bars should be listed in the bill of material with a blank line between the bar groupings, e.g. show a blank line between b bars and d bars.
- When referencing sheets, do not write “See sheet #3 of #15”, instead use “See sheet 3 of 15”.
- Slopes shall be listed as “1:X (V:H)” [e.g. “1:2 (V:H)”] as opposed to “2:1” which was shown in the past and implied “horizontal:vertical”.
- Cross slopes shall be denoted in inches per foot (“/ft) unless there is a super-elevation.
• Generally, span numbers do not need to be called out. An exception to this could be a large structure with many spans.
• When calling out the centerline of a pier, do not call it out as centerline bearing pier _. There are instances when the centerline bearing and centerline pier are not the same. It is preferable to either use two separate labels or to write “Centerline bearing and centerline pier”.
• Callouts for reinforcement bar spacing, steel plates, and bearing plates may be shown in inches. However, plan view dimensions for reinforcement bars and bearing plate details shall be shown in feet and inches.
• Concrete dimensions shall be shown in feet and inches. If a concrete dimension is less than ‘1’-‘0”, it shall be shown in inches.

3.2 Capitalization
As a general rule, capitalize the first letter of the first word of a note or sentence as well as proper names. There are two basic exceptions. One is contractual parties such as Engineer and Contractor. The other basic exception is pay items. The first letter of each word of the pay item should be capitalized except for words such as “of”, “and”, “for” or “in”.

3.3 Abbreviations
Figure 3.3-1 contains a basic list of acceptable abbreviations that may be used when necessary. Generally try to spell words out unless there is a problem with space. Periods do not need to be placed within abbreviations of proper names such as AASHTO.

<table>
<thead>
<tr>
<th>abut.</th>
<th>abutment</th>
<th>min.</th>
<th>minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.F.</td>
<td>back face</td>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>@</td>
<td>baseline</td>
<td>0.F.</td>
<td>outside face</td>
</tr>
<tr>
<td>brg.</td>
<td>bearing</td>
<td>PJF</td>
<td>preformed joint filler</td>
</tr>
<tr>
<td>c.</td>
<td>centerline</td>
<td>PJS</td>
<td>preformed joint sealer</td>
</tr>
<tr>
<td>cl.</td>
<td>clearance</td>
<td>PG</td>
<td>profile grade</td>
</tr>
<tr>
<td>conc.</td>
<td>concrete</td>
<td>prop.</td>
<td>proposed</td>
</tr>
<tr>
<td>const.</td>
<td>construction</td>
<td>rte.</td>
<td>route</td>
</tr>
<tr>
<td>@</td>
<td>diameter</td>
<td>sect.</td>
<td>section</td>
</tr>
<tr>
<td>E.F.</td>
<td>each face</td>
<td>sta.</td>
<td>station</td>
</tr>
<tr>
<td>elev.</td>
<td>elevation</td>
<td>struct.</td>
<td>structure</td>
</tr>
<tr>
<td>exist.</td>
<td>existing</td>
<td>typ.</td>
<td>typical</td>
</tr>
<tr>
<td>f.</td>
<td>flowline</td>
<td>req’d.</td>
<td>required</td>
</tr>
<tr>
<td>F.F.</td>
<td>front face</td>
<td>spa.</td>
<td>spaces</td>
</tr>
<tr>
<td>I.F.</td>
<td>inside face</td>
<td>std.</td>
<td>standard</td>
</tr>
<tr>
<td>jt.</td>
<td>joint</td>
<td>spec.</td>
<td>specification</td>
</tr>
<tr>
<td>long.</td>
<td>longitudinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td>maximum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.3-1. Basic List of Acceptable Abbreviations
3.4 Titles

The guidelines listed below shall be followed when placing titles for sheets or for individual details:

- Both the planning TS & L sheet(s) and the design GP & E must show the sheet name, crossing, route, section, county, station and structure number. The title is to be placed as shown in Fig. 3.4-1 using the text style "Br1:001scale200".

![Figure 3.4-1. TS & L and GP & E Title Placement](image)

- For all other sheets of the design plans, only the sheet name and structure number are shown within the title block. Data fields exist within the borders for this information. They are to appear as shown in Fig. 3.4-2 using the data fields.

![Figure 3.4-2. Title Placement for all other Sheets](image)
The titles for individual details within a set of plans are to be placed using the text style “Br1:001scale200”. By using this text style, the justification, spacing, text size and underlining will appear correctly.

There has been a tendency at times to make detail titles somewhat lengthy or wordy. This should be avoided. If detail titles require further description, it should be done in standard text below the title.

3.5 Borders

The borders used for the preparation of structure plans have been changed to more closely match those used by the rest of the Department. Four structure borders were created; however, three of the four are solely to be used for in-house projects. The cell B00043 of the file “bridge.cel” contains the border that is to be used for consultant structure plans. This cell was placed in the model(s) of the seed files (“ebridge_models.dgn” and “ebridge_individual.dgn”).

The borders used for roadway plans are different than the borders for structure plans. One must not be substituted for the other. The greatest difference between the structure borders and the roadway borders lies primarily in the levels used. Other minor differences include changes in the signature/name block as well as the removal of the scale and the station to station data below the sheet title.

As stated in Section 2.12, It is important to note that the outer shape (22" x 34") of roadway and structure borders are intended to be the edge of the paper or image. This shape is not to be visible in the final prints or images. This is true for both the ANSI B-size as well as the ANSI D-size prints or images.

Consultant names and/or logos shall be included in the lower left block of structure borders as shown in Figure 3.5-1. The “File name =” text may be removed if desired.

The new structure border(s) are to be used for all new projects.

![Figure 3.5-1. Consultant Name Placement for all Sheets](image-url)
3.6 Dimensioning

The BBS currently places dimensions manually using line terminators; however, the
dimension style “Bridge1:001” has been created and may be used instead of, or in
addition to, manually placed dimensions. It is important to note that only basic settings
have been pre-defined for this dimension style. It is likely some changes will be required
to these settings for use in a project. However, some potential problems can be avoided
by not executing the “dgnlib update” command for the dimensions after the dimension
style has been modified. Once a dimension is placed in a design file, those properties
then become a part of the design file.

Whether manually placing dimensions or employing the dimension style, the proper
arrowhead B00021 from the cell library “bridge.cel” should be used.

Guidelines for the placement of dimensions or callouts are as follows:

- Dimension stack spacing should be ½”, although ⅜” is acceptable if there are
 space constraints. The extension lines should extend ⅛” beyond the dimension
 line. See Figure 3.6-1 (Detail “a”).
- Dimension lines should not be broken unless passing through another dimension
 or text. See Figure 3.6-1 (Detail “b”).
- Generally, do not break or mask object lines for dimension lines unless there is
 interference with an arrowhead or text. See Figure 3.6-1 (Detail “c”).
- If the active angle when placing text is between 90 degrees and 105 degrees, the
text should be placed such that it can be read from the right of the sheet. If the
angle is greater than 105 degrees, it should be placed such that it can be read
from the left or bottom. See Figure 3.6-2.
- It is acceptable to show reinforcement dimensions with double arrows or by
 pointing to the first and last bar. Consistency with a chosen style is important.
- If there is no skew on a structure, there is no need to dimension a 90 degree
 angle throughout the job. This angle should only be shown on the TS&L and
 GP&E.
- Avoid causing callouts to pass through lines of dimensions. See Figure 3.6-3.
Figure 3.6-1. Dimension Placement and Callouts (Example #1)
Figure 3.6-2. Dimension Placement and Callouts (Example #2)
Figure 3.6-3. Dimension Placement and Callouts (Example #3)
3.7 Patterning

Several different patterns exist in "bridge.cel" for general use. They include both area patterns and linear patterns. The area patterns are generally used for section cuts. The linear patterns are not essential due to the creation of the BBS custom line styles. However it is still acceptable to use the linear patterns.

Suggested guidelines for the placement of patterns are as follows:

- Whenever a section is cut through any material, the surfaces touched by the cutting plane should be patterned using the proper pattern (stipple or hatching).
- End views should not be patterned as if they are sections.

3.8 Drawing Scales

Although drawings do not have to be drawn “to scale”, many times it is beneficial to do so. If drawings are to scale, the scale used is not to be identified. If details are not drawn to scale, they should always be proportionate. Figure 3.8-1 lists common architectural and engineering scales that may be used.

There are different methods of drawing plans to scale. Four of the methods that can be used are as follows:

- Draw full scale to the side, scaling it down by 1 / scale factor. The newer base sheets have been drawn using this method such that they could be contained in individual cells of a cell library in a uniform manner. The annotation scale is not set in this method.
- Draw full scale in a separate design model or design file other than the border. From within the file (or model) containing the border, the full scale drawings are referenced in at 1 / scale factor. Text and dimensions can be placed either in the design file (or model) with the border or in the design file (or model) with the full scale drawing. Employment of the annotation scale feature is necessary if the text and dimensions are placed in the design file (or model) containing the full scale drawing. See Section 2.5 for information concerning the annotation scale.
- Draw full scale, inserting the border at the desired scale factor into the same design file (or model). Text and dimensions are required to be placed using the annotation scale feature. See Section 2.5 for information concerning the annotation scale.
- Reference full scale drawing at 1:1 into file (or model) containing a border scaled up by the desired scale factor. Employment of the annotation scale feature is necessary whether the text and/or dimensions are placed in the file containing the border or else in the file that is referenced. See Section 2.5 for information concerning the annotation scale.

There are advantages and disadvantages to each of the above methods. The Bureau of Bridges and Structures typically uses the first or the second method. The sample drawings on the Bridges and Structures CADD Support Web Page provide examples of the first two methods.
Architectural Scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:192</td>
<td>1/16" = 1'-0"</td>
</tr>
<tr>
<td>1:128</td>
<td>3/32" = 1'-0"</td>
</tr>
<tr>
<td>1:96</td>
<td>1/8" = 1'-0"</td>
</tr>
<tr>
<td>1:64</td>
<td>3/16" = 1'-0"</td>
</tr>
<tr>
<td>1:48</td>
<td>1/4" = 1'-0"</td>
</tr>
<tr>
<td>1:32</td>
<td>3/8" = 1'-0"</td>
</tr>
<tr>
<td>1:24</td>
<td>1/2" = 1'-0"</td>
</tr>
<tr>
<td>1:16</td>
<td>3/4" = 1'-0"</td>
</tr>
<tr>
<td>1:12</td>
<td>1" = 1'-0"</td>
</tr>
<tr>
<td>1:8</td>
<td>1 1/2" = 1'-0"</td>
</tr>
<tr>
<td>1:4</td>
<td>3" = 1'-0"</td>
</tr>
</tbody>
</table>

Engineering Scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2400</td>
<td>1" = 200'</td>
</tr>
<tr>
<td>1:1200</td>
<td>1" = 100'</td>
</tr>
<tr>
<td>1:720</td>
<td>1" = 60'</td>
</tr>
<tr>
<td>1:600</td>
<td>1" = 50'</td>
</tr>
<tr>
<td>1:480</td>
<td>1" = 40'</td>
</tr>
<tr>
<td>1:360</td>
<td>1" = 30'</td>
</tr>
<tr>
<td>1:240</td>
<td>1" = 20'</td>
</tr>
<tr>
<td>1:120</td>
<td>1" = 10'</td>
</tr>
<tr>
<td>1:60</td>
<td>1" = 5'</td>
</tr>
</tbody>
</table>

Figure 3.8-1. Common Architectural and Engineering Scales
4 TSL and Final Plan Preparation

4.1 File Creation / Naming Convention

As stated in Section 2.8 of this Guide, individual design files containing only the default model or a design file containing multiple models may be used when creating TS&L’s or design plans. In either case, the seed files described in Section 2.9 must be used. They may be obtained from the IDOT CADD environment described in Section 2.1.

The file naming conventions for TS&L’s and design plans are covered in the CADD Roadway and Structure Project Deliverable Policy.

4.2 Roadway Data

When creating a TS&L, GP&E or other details where roadway information is used, it is acceptable to either incorporate the roadway information (such as the topography) into a project’s design file/model, or reference this data from the roadway files into the design file/model. In either case, it is acceptable to use the roadway levels and line styles for this information. Changing these elements to the structure levels is not required.

4.3 Bridge Manual Checklists

The Bridge Manual contains checklists for the preparation of TSL’s and final design plans.

For TSL's, the checklists begin in Section 2.3.13.1. There are example TSL's for a variety of projects available at: http://www.dot.il.gov/bridges/examples.html.

For final design plans, the checklist is located in Section 3.1.13.

4.4 Standards Checker

The Standards Checker files exist in the CADD environment discussed in Section 2.1. Instructions on its use from within MicroStation are in the directory containing the dgnlib files. It is titled MicroStation Standards Checker.doc. It is important to note that the instructions work for projects in which individual design files are provided for each sheet of the plans. For projects where multiple design models are contained within a single design file, the Standards Checker is required to be run as a batch process under Utilities/Batch Process.

4.5 Final Plan Sheet Sequence

Design plans should be sequenced as follows:

- General Plan and Elevation (GP&E)
- General Data (except for simple structures)
- Footing Layout (if required)
- Stage Construction Details (if required)
- Temporary Barrier or Temporary Railing Details (if required)
- Top of Slab Elevations
- Top of Approach Slab Elevations
- Superstructure (Plan and Cross Section)
- Superstructure Details
- Diaphragm Details (for bridges with integral or semi-integral abutments)
• Bridge Approach Slab Details
• Bridge Railing Details
• Expansion Joint Details
• Drainage Scuppers
• Girder and Framing Details (Steel or Concrete)
• Bearing Details
• Abutment Details
• Pier Details
• Foundation Details (includes piles)
• Bar Splicer Assembly Details
• Cantilever Forming Brackets
• Soil Boring Logs

4.6 Guidelines

Sections 4.6.1 through 4.6.13 contain a collection of guidelines that should be followed when working with any structure plans. Questions and problems that have been encountered over the years led to their creation. The information has been grouped together by plan sheet type.

4.6.1 General

The following guidelines apply to all applicable sheets of structure plans:
• Details in plan view (where orientation is important and unique to that view) must utilize the north arrow (B00028) found in the cell library “bridge.cel”. The district north arrows found in the cell library “IDOTroad.cel” are not to be used within the structure portion of plans.
• Details in plan view that are typical regardless of orientation do not need to have north arrows placed.

4.6.2 Type, Size and Location / General Plan and Elevation

The following guidelines should be used when creating a TSL or GP&E:
• TSL and GP&E plan views should be as uncluttered as possible. Utilities, adjacent structures or topography not directly related to constructing the structure need not be shown.
• The total bill of materials and general notes should typically be shown on a general data sheet immediately following the GP&E. For simple jobs, this information can be shown on the GP&E and a general data sheet may be omitted.
• For structure plans, do not show the direction of the stationing increase on the TS&L or GP&E except for culverts and three-sided structures. Structures should usually be shown with stationing increasing from left to right.
• The design consultant firm name must be included in, or near, the title block on each structure plan sheet. See Section 3.5.
• Include the designer’s, checker’s and technician’s initials on each plan sheet. A data block exists in the lower left corner of BBS borders for this information.
• An index of structure sheets shall be included on the GP&E or general data sheet.
• The contract number should be placed on each sheet of the design plans in the lower right corner. A text entity is included on BBS borders for this.
Showing the centerline of structure throughout the plans is unnecessary unless dimensions are tied to it. It should be called out on the TS&L and GP&E.

Calling out the traffic barrier terminals in both the plan and the elevation views of the TS&L or GP&E is unnecessary.

For rebuilt structures where a portion of the existing structure is re-used, the existing name plate typically is cleaned and relocated adjacent to the new name plate. This information shall be provided in a note below the name plate detail.

For partially rebuilt structures, the new name plate should indicate “Re-built” on the GP&E.

Pay items should be listed in order by pay code number in the total bill of material of the GP&E although the pay code numbers themselves are not shown on the structure plans. This provides for some uniformity between projects and reduces the chances of omitting required pay items.

For GP&E’s, try to present the general notes in the order that they appear in the Bridge Manual. This makes plans more uniform and easier to verify that the required notes have been included.

4.6.3 Stage Construction Details

Figures 4.6.3-1 and 4.6.3-2 show the acceptable method of detailing the removal and construction cross sections. The guidelines below should be used when creating stage construction details:

If a project utilizes stage construction, there should be an offset dimension from the centerline of roadway, or other primary survey line, to the stage line and all other dimensions shall be from the stage line.

Call out the temporary concrete barrier and/or temporary bridge rail and locate with dimensions in stage I and II removal cross sections only.

Do not dimension actual distances on the cross sections for stage removal or stage construction.

The widths of the stage I and II traffic lanes should be dimensioned.

Provide the dimension from the centerline of roadway to the stage construction joint in the stage I construction cross section only.

Do not call out a “stage construction line”. This is redundant and understood because of the stage I and stage II construction callouts.

In the notes, indicate which direction the cross sections are viewed. Do not indicate the direction under each cross section.

Deck cross sections should be looking in the direction of increasing station.

Avoid repeating any dimensions that are shown on a previous cross section.

Only call out the existing bridge rail if it is being salvaged.

Temporary soil retention details and notes should be placed on this sheet unless there is insufficient room and a separate sheet is necessary.

Additional guidelines for stage detailing throughout a job are as follows:

Bar splicer callouts should be listed in the following manner: “9 bar splicers for #5 a3(E) bars”, where the a3(E) are stage I bars.

Stage construction line and/or joint callouts do not need to be repeated in every view on a sheet.

The stage construction line does not need to be labeled if other callouts indicate the staging. This redundancy is unnecessary.
Figure 4.6.3-1. Acceptable Detailing for Stage I Removal and Construction
Figure 4.6.3-2. Acceptable Detailing for Stage II Removal and Construction
4.6.4 Top of Slab Elevations

- The plan for the top of slab elevation sheets should be placed on the first top of slab elevation sheet.
- Include top of slab elevation sheet(s) for the approach slabs.
- Use the text style “Br1:001scale_TOS_Elev” for the information within the tables.
- Top of slab elevations for both the bridge as well as the approach slabs shall be shown to the nearest 0.01 ft.
- Use centerline of _ Abut. in the plan and in the dead load deflection diagram with integral abutments.
- Use centerline Brg. _ Abut. in the plan and in the dead load deflection diagram with pile supported stub or semi-integral abutments.
- Use centerline Brg. Pier _ in the plan and in the dead load deflection diagram with a pier if there is only a single bearing line at the pier.
- For double bearings at a pier: In the plan and in the dead load deflection diagram, call out both centerlines of bearing and the centerline of pier.
- The centerline of beams or girders should be shown using the level “Bridge_Centerline”. The centerlines are not meant to be schematic representations of the beams in this case.
- If there is a negative value (uplift) in the dead load deflection diagram, show the deflection line above the horizontal reference line. Do not show the dimension as a negative value.

4.6.5 Superstructure

- The exact number of b bars are not required to be represented in the deck cross section since these bars are called out in the plan. It is only necessary to show the first and the last bars for the bottom longitudinal reinforcement between the beams, using the callout to specify how many bars should be placed. For the top longitudinal reinforcement, it is only necessary to show a portion of the bars on each end of the section.
- Drains or scuppers need not be shown on the plan or cross section. Their locations are shown on the GP&E and are detailed elsewhere on the plans.
- Show only the parapet dimensions included on the current plan and cross section base sheets. All other parapet dimensions are on the superstructure details sheet.
- Do not show the abutment “hatch block” on the superstructure plan. The “hatch block” is the concrete poured after the superstructure is in place (for applicable jobs) and is detailed on the abutment sheets as required.
- Stationing does not generally need to be shown on the superstructure plan.
- The notes belonging on the superstructure sheet do not need to be repeated on every superstructure sheet. If the deck plan requires more than one sheet, those notes should be placed on the last superstructure sheet before the superstructure details sheet.
- On the superstructure cross section, do not show the shear studs. They should be detailed on the structural steel sheets.
- Lane dimensions do not need to be shown in the superstructure cross section unless they are at breaks in the cross slopes.
4.6.6 Diaphragm Details (Integral Abutment)
- On the concrete diaphragm elevation for integral abutments, do not show any wingwall details, including reinforcement. This information is included on the abutment sheets.
- Showing the approach corbel in the elevation view is unnecessary.
- In the diaphragm elevation view, do not reference section A-A in the callouts. The section cut is sufficient.

4.6.7 Diaphragm Details (Semi-Integral Abutment)
- On the diaphragm elevation, do not show any wingwall details, including reinforcement. This information is included on the abutment sheets.
- Showing the approach corbel in the elevation view is unnecessary.
- In the diaphragm elevation view, do not reference section A-A in the callouts. The section cut is sufficient.
- Either on the diaphragm details or on the superstructure sheets, include details similar to those shown in Figure 3.8.4-2 of the Bridge Manual.

4.6.8 Bridge Approach Slab Details
- Base sheets for bridge approach slabs exist in both the Superstructure cell library as well as the Integral_superstructure cell library.
- Example bridge approach slab detail sheets may be found at http://www.dot.il.gov/bridges/examples.html.

4.6.9 Framing Plan (Steel, PPC I-beam or bulb T-beam)
- For structures with steel beams or girders: The framing plan is a schematic representation of the beams or girders. Beams, girders and diaphragms must be drawn as single lines using the level “Bridge_Design Steel Object” for proposed steel or “Bridge_Design Existing” for existing steel that is to remain.
- For structures with PPC I-beams or bulb T-beams: The footprint of these beams must be drawn using the level “Bridge_Design Concrete Object”.

4.6.10 Structural Steel Details
- Show web depth of plate girders in inches.
- Steel angle callouts should be listed as shown in AISC (L 6 x 4 x 1/4).
- For jobs using wide flange beams, the shear stud spacing can be detailed either in the plan or an elevation. If they are called out in the plan view, the studs themselves should not be shown. Only their spacing should be shown in the plan view. If the stud spacing is shown in a beam elevation, the studs should be shown.
- For jobs using plate girders, the shear studs and spacing should be shown on the girder elevation.
- The proper moment and reaction tables for LFD and LRFD jobs are located in the cell library “details.cel”. Do not add or remove definitions from these cells.
4.6.11 Abutments and Piers

- Put a north arrow on the abutment plan, but do not say which direction the reader is “looking” in the elevation view. It is understood that the view is always looking at the front face of the abutment.
- Ensure that a north arrow is placed on the pier plan.
- In the elevation view of a pier, state which direction you are looking under the view’s title.
- Dimension the bearings and piles from the centerline of roadway, or stage construction joint, if the job is staged. The dimensions shown will be from the centerline, or stage construction joint, to the exterior bearings and the exterior piles. It is not necessary to include a dimension from the end bearings or piles to the end of the abutment or pier.
- For sections through abutment or pier caps, do not show the steps beyond that section. The location of the section should be chosen such that it is representative of the substructure element being detailed.
- The anchor bolt locations should be detailed either in the abutment and pier plan view, or in a separate enlarged view.

4.6.12 Pile Base Sheets

- There are three pile base sheets in the substructure cell library. F-HP for steel piles, F-MS for metal shell piles and F-PC for precast piles. Regardless of which one is used, details that do not apply are not to be crossed out.

4.6.13 Soil Boring Logs

- Soil boring logs, rock core logs and Shelby tube tables should be included with design plans if they were made. IDOT uses the software named “gINT” to create logs for inclusion with design plans. These logs are database reports from gINT exported to dxf or dgn format. This enables inclusion into MicroStation as editable vector elements. Purchasing or using this software is not required. Logs may be included by referencing in image files (such as “tif” or “jpg”) through MicroStation’s Raster Manager. Whatever method is used, ensure that the boring logs will be legible on reduced size prints.
5 Addendums

In the event that revisions or changes to the contract plans are required after plans have been posted for bidding, but prior to the letting, an “Addendum” may be required. It is important to note that all addendums to structure plans require review and approval by the Bureau of Bridges and Structures.

If an addendum is required, any element or detail that is changed shall be denoted by placing a shape using the attributes set by the level “Bridge_Addendum”. Attached to this shape shall be a triangle that can be inscribed within a ¼” radius circle and a number indicating the addendum number. This callout shall be on the level “Bridge_Dimensions and Text”. In the revision block of the sheet, the symbol with the revision number shall follow “Revised”, along with the date of the revision and the initials of the person making the revision. If an entire sheet is added or revised, do not place a shape around the perimeter of the sheet. Place an additional addendum symbol near the revision block with the text “Added sheet” or “Entire sheet revised” following the symbol.

Cells were created in the cell library “bridge.cel” to simplify symbol placement. The addendum cells are B00032 and B00033.

Figure 5-1 is provided as an example of an addendum.

6 Construction Changes

In the event that revisions or changes to the structure contract plans are required after letting, a “Construction Change” to the contract plans is required to be prepared and distributed. It is important to note that all construction changes to structure plans require review, approval, and distribution by the Bureau of Bridges and Structures.

If a Construction Change is required for a bridge project, any element or detail that is changed shall be denoted by placing a shape using the attributes set by the level “Bridge_Construction Change”. Attached to this shape shall be a ¼” square and a number indicating the construction change number. This callout shall be on the level “Bridge_Dimensions and Text”. In the revision block of the sheet, the symbol with the construction change number shall follow “Revised”, along with the date of the revision and the initials of the person making the revision. If an entire sheet is added or revised, do not place a shape around the perimeter of the sheet. Place an additional construction change symbol near the revision block with the text “Added sheet” or “Entire sheet revised” following the symbol.

Cells were created in the cell library “bridge.cel” to simplify symbol placement. The construction change cells are B00034 and B00035.

Figure 6-1 is provided as an example.

![Figure 6-1. Construction Change Detailing Example](image-url)
7 Internet Information

7.1 Web Page
The Bureau of Bridges and Structures Web Page Address is:

http://www.dot.il.gov/bridges/brdocuments.html

The cell libraries and additional CADD resources are available under the Bridges and Structures CADD Support link. Other pertinent information related to structures is also accessible from this page.

7.2 Subscription Service
Signing up for the Bridges and Structures Subscription Service is strongly encouraged. Notifications are sent out via e-mail whenever changes are made to any items on the BBS Documents, Manuals and Procedures Web Pages. You may subscribe to this service at: http://www.dot.il.gov/bridges/subscription.html.

7.3 ProjectWise Web Explorer
Individuals may be directed to send or receive files using the IDOT ProjectWise Web Explorer. It may be accessed through http://planroom.dot.illinois.gov/. At that site, the location of “PWIDOT” must be selected. The User Name should be set to “public” and the password entered as “idot” (both without the quotations). Figure 7.3-1 is a screen-shot of the login screen for the ProjectWise Web Explorer. Instructions for the transfer of files there may be found within the “DataTransfer” folder under the “Documents” folder. It is titled, ProjectWise Web Explorer for File Transfer.pdf.

It is important to note that the version of ProjectWise Web Server that the Department is currently running is only documented to work with Internet Explorer 6 through 8.

Figure 7.3-1
8 District and Central Office CADD Manager Contact Information

<table>
<thead>
<tr>
<th>District</th>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>District 1</td>
<td>Shawn Ley</td>
<td>847-705-4008</td>
<td>Shawn.Ley@illinois.gov</td>
</tr>
<tr>
<td>District 2</td>
<td>James Hogenson</td>
<td>815-284-5490</td>
<td>James.Hogenson@illinois.gov</td>
</tr>
<tr>
<td>District 3</td>
<td>Mike Wasilewski</td>
<td>815-434-8952</td>
<td>Michael.Wasilewski@illinois.gov</td>
</tr>
<tr>
<td>District 4</td>
<td>Brian Keith</td>
<td>309-671-3395</td>
<td>Brian.Keith@illinois.gov</td>
</tr>
<tr>
<td>District 5</td>
<td>Justin Cearlock</td>
<td>217-466-7393</td>
<td>Justin.Cearlock@illinois.gov</td>
</tr>
<tr>
<td>District 6</td>
<td>Gregory Sparks</td>
<td>217-557-4718</td>
<td>Gregory.Sparks@illinois.gov</td>
</tr>
<tr>
<td>District 7</td>
<td>Mona Steffen</td>
<td>217-342-8206</td>
<td>Mona.Steffen@illinois.gov</td>
</tr>
<tr>
<td>District 8</td>
<td>Sandy Phillips</td>
<td>618-346-3231</td>
<td>Sandra.Phillips@illinois.gov</td>
</tr>
<tr>
<td>District 9</td>
<td>Barbara Lavender</td>
<td>618-351-5221</td>
<td>Barbara.Lavender@illinois.gov</td>
</tr>
<tr>
<td>BIP</td>
<td>Rhonda Laughlin</td>
<td>217-785-4084</td>
<td>Rhonda.Laughlin@illinois.gov</td>
</tr>
<tr>
<td>BOCBS</td>
<td>Michael Mossman</td>
<td>217-782-1510</td>
<td>Michael.Mossman@illinois.gov</td>
</tr>
</tbody>
</table>